

Second Generation Ethanol (E2G):

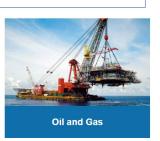
Technology, Initiatives, and Policy Proposals for ASEAN

About Us: Nippon Steel Engineering Co. Ltd., (NSE)

NIPPON STEEL ENGINEERING CO., LTD. (NSE*) is the engineering company representing the NIPPON STEEL Group.

NSE started its engineering business in 1974 by utilizing its plant equipment technologies and steel utilization technologies which have been amassed in the steel manufacturing industry to promote social and industrial infrastructure projects.

Today NSE provides optimal solutions to a wide range of sectors, such as **environment & energy business including carbon neutral**, building & infrastructures and industrial services, with its capabilities in engineering, procurement, and construction, as well as operation and maintenance.



Head office: Tokyo, Japan
Capital: ¥ 15 billion
Sales: ¥ 400 billion

(FY2024; consolidated)

*In the following slides, the term 'NSE' is used solely as an abbreviation for our company, and not in a trademark sense.

NSE's Carbon Neutral Business & Technologies

✓ NSE offers a wide range of decarbonization solutions. In this forum, we will focus on introducing our technologies and initiatives in biofuels (E2G), along with our proposals for ASEAN.

Offshore wind farm

NSE has a lot of experiences as EPCI contractor for offshore project and will provide total solution for offshore wind farm development.

Waste to energy

NSE has and operates 35 waste treatment facilities in Japan, which generate power from waste.

Biomass power plant (75MW, the largest class in Japan)

Nippon Steel Group owns and operates a variety of power generation facilities in Japan, and has established a system to supply power not only to private demand but also to local communities. NSE is also engaged in the construction and operation of biomass power plants.

Geothermal steam production facility

(Domestic market share: 50% or Since the 1980s, NSE has designed, procured, and constructed steam production facilities for geothermal power plants. In 2016, NSE also started selling binary power plant.

CO₂ recovery, ESCAP™

ESCAP is an energy-saving CO2 absorption process that enables the separation and recovery of high-purity CO2 from effluent gases.

FT Synthesis Fuel Technology (GTL, e-fuel)

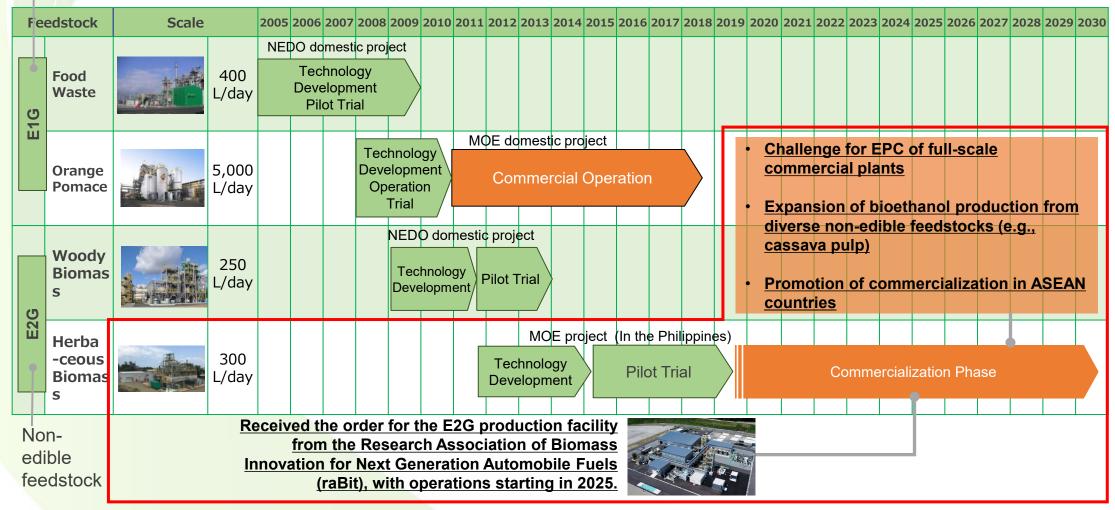
Converts CO and H₂ into clean liquid fuels, applicable to GTL, e-fuel.

Sewage sludge fuelization, J-COMBI™

J-COMBI can process sewage sludge into granular dry fuel without damaging its own calorific value. The fuel is usable as a coal alternative in a power plant.

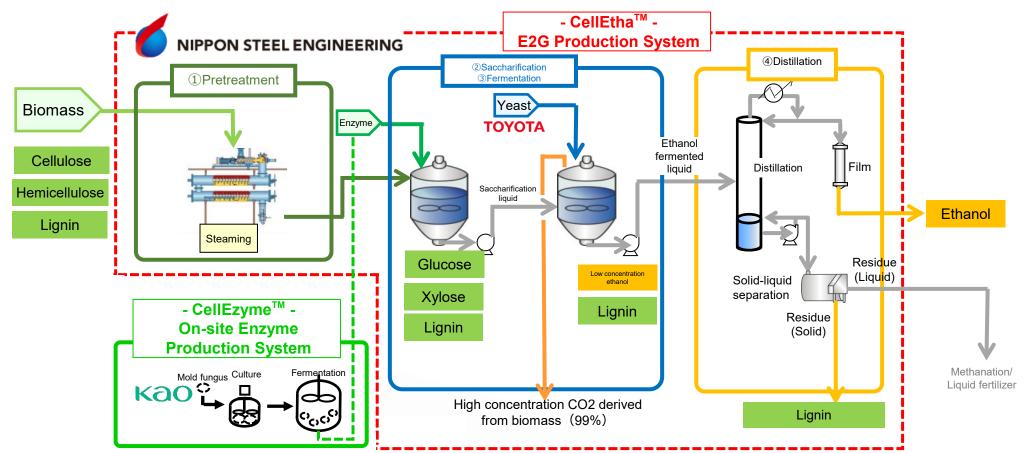
Biofuel and biomaterial technologies

NSE has production technologies of bioethanol (CellEthaTM, CellEzymeTM) and biomass charcoal.

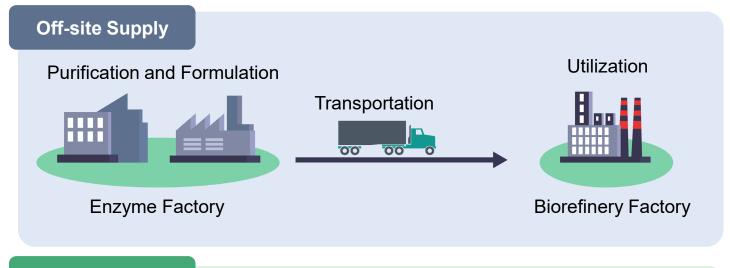

CO₂ utilization technologies

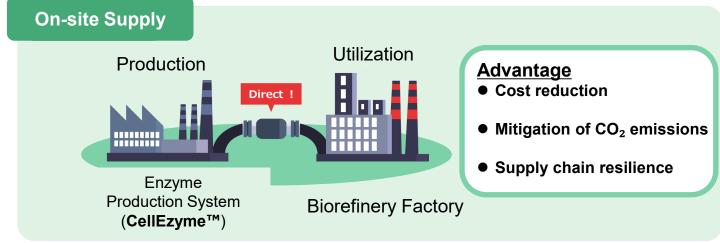
NSE is conducting development of carbon recycle technologies, which are methanation, e-Methanol Synthesis etc.

History and Current Project of NSE's Various Biomass Ethanol Technologies


NSE has developed technologies to produce ethanol from a variety of feedstocks and has established a technology for producing bioethanol from cellulosic biomass and cassava pulp (non-edible).

Edible feedstock


NSE's Integrated E2G Production System - CellEtha™-


- ✓ E2G Production System (CellEtha[™]) achieved the World's Highest Ethanol Yield 250 to 300 liters per dry ton of biomass
- ✓ The On-site Enzyme Production System (CellEzyme™), integrating Kao Corporation (Kao)'s enzyme technology with our engineering expertise, reduces enzyme costs compared to procuring enzymes from the market.
- ✓ High-Efficiency Fermentation Process jointly developed with TOYOTA MOTOR CORPORATION (TOYOTA), using yeast developed by TOYOTA
- ✓ Further economic efficiency is achieved through the utilization of ethanol residues (lignin).

NSE's on-site enzyme production technology - CellEzyme™ -

- ✓ High enzyme costs remain a barrier to the wider adoption of E2G.
- ✓ On-site Enzyme Production System (**CellEzyme[™]**), integrating Kao's enzyme technology with our engineering expertise, reduces enzyme costs compared to procuring enzymes from the market.

Introduction of the E2G Pilot Scale Plant in the Philippines

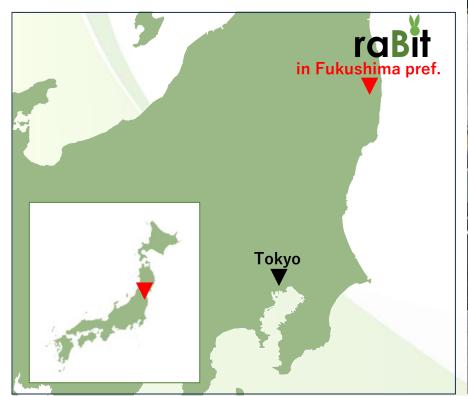
Cellulosic Ethanol Pilot Plant - Supported by Japan's Low-Carbon Initiative -

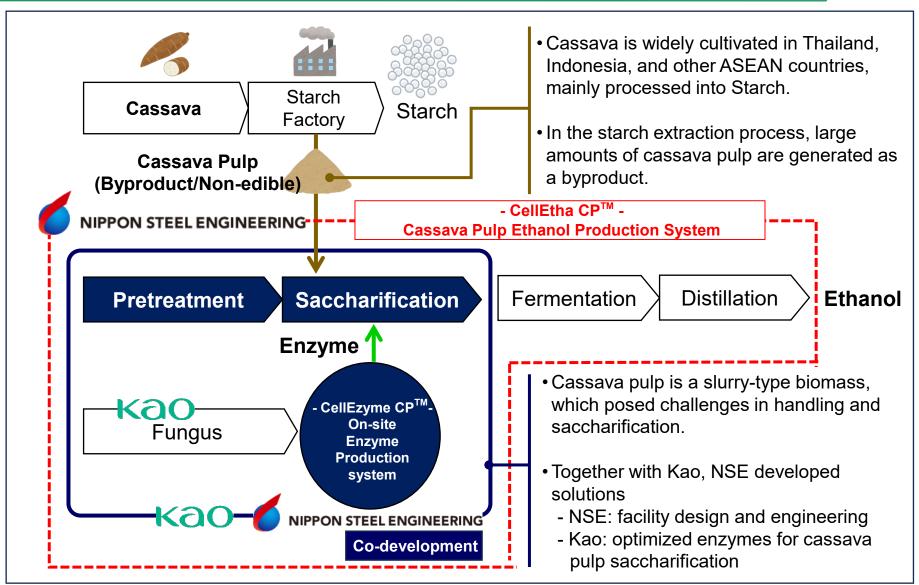
- Developed technologies for producing cellulosic ethanol from various biomass sources, such as sugarcane bagasse, Napier grass, and Sugarcane trash, successfully demonstrating flexibility and high yield performance across different feedstocks.
- Demonstration conducted with an integrated cellulosic ethanol production system in the Philippines.
- ✓ Achieved ethanol yields of <u>250–300 liters per dry ton of bagasse</u> among the highest in the world.

Cultivation- Harvesting

Cellulosic Ethanol Pilot Trial Plant

Stable feedstock supply Fully Integrated Cellulosic Ethanol Producing System




NSE's Proven Track Record in E2G Engineering & Construction

- Plant owner: Research Association of Biomass Innovation for Next Generation Automobile Fuel (raBit) (raBit was established by Daihatsu Motor Co., Ltd., ENEOS Corporation, Mazda Motor Corporation, SUBARU CORPORATION, SUZUKI MOTOR CORPORATION, TOYOTA MOTOR CORPORATION, and Toyota Tsusho Corporation for technology research of bioethanol for automobile.)
- Contractor: Nippon Steel Engineering Co.,Ltd.
- Site: Fukushima Prefecture, Japan
- Capacity: approx. 60,000 Liters/year
- Feedstock: Sorghum (stalk and leaf)
- Beginning of operation: In 2025

Our Ongoing Initiatives in ASEAN - The Case of Cassava Pulp -

- As a result, NSE and Kao confirmed low-cost and high-yield ethanol conversion from cassava pulp.
- Upon scale-up, costs are expected to reach a costcompetitive level close to first-generation ethanol (E1G).

Proposal for ASEAN: Lessons from Successful E2G Models in the EU

Critical factors for the realization of EU **ASEAN** E2G **RED III** Institutional framework Advanced biofuel blending obligation needs to be established* **Policy** E2G are subject to double counting. *The Philippines has preferential policies for domestically produced Penalty avoidance under blending first-generation (E1G) ethanol. mandates. Market development is **Economic** essential to drive the E2G Premium pricing accepted by market **Viability** sector Commercialization of F2G Enabled by NSE's role as technology is not yet domestic, but **Production** both EPC contractor and relies on proven large-scale projects **Technology** technology provider overseas, while policy frameworks create strong market demand Rich potential in agricultural Limited domestic feedstocks; E2G residues and other biomass is imported **Feedstock** (Ex. Thailand / Indonesia / Vietnam → Cassava Pulp, Philippines → Bagasse).

- ASEAN can complete the E2G value chain domestically with NSE's technology and abundant feedstocks.
- With policies and markets in place, ASEAN can take the lead in driving E2G.

Solutions for the Future

CONTACT INFORMATION:

Nippon Steel Engineering Co.,Ltd.

Koya Omura

Manager, Energy & Green Transformation Business Development Department

E-mail: omura.kohya.cy3@eng.nipponsteel.com